Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 45
Filter
3.
Genes Nutr ; 18(1): 7, 2023 Apr 19.
Article in English | MEDLINE | ID: mdl-37076809

ABSTRACT

The predominant source of alcohol in the diet is alcoholic beverages, including beer, wine, spirits and liquors, sweet wine, and ciders. Self-reported alcohol intakes are likely to be influenced by measurement error, thus affecting the accuracy and precision of currently established epidemiological associations between alcohol itself, alcoholic beverage consumption, and health or disease. Therefore, a more objective assessment of alcohol intake would be very valuable, which may be established through biomarkers of food intake (BFIs). Several direct and indirect alcohol intake biomarkers have been proposed in forensic and clinical contexts to assess recent or longer-term intakes. Protocols for performing systematic reviews in this field, as well as for assessing the validity of candidate BFIs, have been developed within the Food Biomarker Alliance (FoodBAll) project. The aim of this systematic review is to list and validate biomarkers of ethanol intake per se excluding markers of abuse, but including biomarkers related to common categories of alcoholic beverages. Validation of the proposed candidate biomarker(s) for alcohol itself and for each alcoholic beverage was done according to the published guideline for biomarker reviews. In conclusion, common biomarkers of alcohol intake, e.g., as ethyl glucuronide, ethyl sulfate, fatty acid ethyl esters, and phosphatidyl ethanol, show considerable inter-individual response, especially at low to moderate intakes, and need further development and improved validation, while BFIs for beer and wine are highly promising and may help in more accurate intake assessments for these specific beverages.

4.
Healthcare (Basel) ; 10(5)2022 May 09.
Article in English | MEDLINE | ID: mdl-35628006

ABSTRACT

After a cerebral stroke insult, there is an overproduction of Reactive Oxygen Species (ROS), which overcome the antioxidant defenses, causing further tissues damage. The status of oxidative stress in stroke patients over time, particularly in those undergoing rehabilitation treatments, has been poorly investigated. We analyzed the oxidative stress status in 61 subacute stroke patients (33 females and 28 males) admitted to our rehabilitation center by measuring, in serum: hydroperoxides levels (d-ROMs), antioxidant activity (BAP test), and the relative antioxidant capacity (OSI index). We also analyzed patients for glucose levels and lipid profile. In addition, we analyzed the correlation between oxidative stress status biomarkers and motor deficits, disability, and pain. Almost all patients showed high or very high levels of d-ROMs, while BAP levels were apparently in the reference range of normality. Females had lower BAP values (females: 2478 ± 379; males: 2765 ± 590; p = 0.034) and lower OSI index (females: 5.7 ± 1.9; males: 6.8 ± 1.9; p = 0.043). Moreover, in the male group, the correlation with motor impairment and disability showed a worsened motor performance when oxidative stress is higher. Female group, on the other hand, had an unexpected different trend of correlation, probably due to an unbalanced systemic oxidative stress. Further research is needed to see if sex differences in oxidative stress status in subacute stroke patients persist after rehabilitation.

5.
Front Nutr ; 8: 689084, 2021.
Article in English | MEDLINE | ID: mdl-34395494

ABSTRACT

A large subset of fermented foods act as vehicles of live environmental microbes, which often contribute food quality assets to the overall diet, such as health-associated microbial metabolites. Foodborne microorganisms also carry the potential to interact with the human gut microbiome via the food chain. However, scientific results describing the microbial flow connecting such different microbiomes as well as their impact on human health, are still fragmented. The aim of this systematic review is to provide a knowledge-base about the scientific literature addressing the connection between foodborne and gut microbiomes, as well as to identify gaps where more research is needed to clarify and map gut microorganisms originating from fermented foods, either traditional or added with probiotics, their possible impact on human gut microbiota composition and to which extent foodborne microbes might be able to colonize the gut environment. An additional aim was also to highlight experimental approaches and study designs which could be better standardized to improve comparative analysis of published datasets. Overall, the results presented in this systematic review suggest that a complex interplay between food and gut microbiota is indeed occurring, although the possible mechanisms for this interaction, as well as how it can impact human health, still remain a puzzling picture. Further research employing standardized and trans-disciplinary approaches aimed at understanding how fermented foods can be tailored to positively influence human gut microbiota and, in turn, host health, are therefore of pivotal importance.

6.
Acta Biomed ; 92(1): e2021077, 2021 02 25.
Article in English | MEDLINE | ID: mdl-33682806

ABSTRACT

BACKGROUND AND AIM: During Coronavirus disease 2019 (Covid-19) Italy experienced deep lockdown with closure of almost all activities, with the exception for food shops and few others. During this quarantine, alteration of dietary habits occurred, due to the changes in food availability and mandatory meal house-consumption. The change in dietary habits could somehow be directed by freely accessible information available on internet.  Thus, s we evaluated the type and the scientific quality of the information provided to the Italian population by the most visible web sites found on google, relating diet in Covid-19 time. METHODS: we systematically perform a reliability and content analysis of Italian language websites using google as search engine and a combinations of diet/nutrition/Covid-19 as search terms Results: 88 webpages were included in the study, the great part representing newspaper webpages. Institutional webpages, despite having high scientific quality, did not have high visibility. Generally, all the other webpages reported information of medium-quality scientific level. CONCLUSION: finding appropriate solutions to redirect the population's attention to more reliable and accessible information is mandatory.


Subject(s)
COVID-19/epidemiology , Diet , Internet , SARS-CoV-2 , Feeding Behavior , Humans , Italy/epidemiology , Reproducibility of Results
7.
Front Pharmacol ; 12: 747638, 2021.
Article in English | MEDLINE | ID: mdl-34975471

ABSTRACT

Hamamelis virginiana L. a rich source of both condensed and hydrolyzable tannins, utilized to treat dermatological disorders. Since no experimental and clinical data is available for its use as oral formulation in skin related disorders, the purpose of this study was to investigate the effects of Hamaforton™ (Hamamelis virginiana extract) metabolites on gene dysregulation induced by ultraviolet A radiation in cultured human dermal fibroblasts. A combination of in vivo and ex vivo experimental designs has been exploited in order to take into account the polyphenol metabolic transformation that occurs in humans. 12 healthy volunteers received either a capsule of Hamaforton™ or a placebo in a randomized, blinded crossover trial. After Hamaforton™ ingestion, the kinetic of appearance of galloyl derivatives was measured in plasma. Then, in the ex vivo experiment, the serum isolated after supplementation was used as a source of Hamaforton™ metabolites to enrich the culture medium of dermal fibroblasts exposed to ultraviolet A radiation. Three different gallic acid metabolites (4-O-methyl gallic acid, 4-O-methyl gallic acid sulphate and trimethyl gallic acid glucuronide) were identified in volunteer plasma. While, ultraviolet A irradiation of dermal fibroblasts affected the expression of extracellular matrix genes, the presence of Hamaforton™ metabolites in the culture media did not affect the expression of most of those genes. However, the activation of the expression of 10 different genes involved in repair processes for the maintenance of skin integrity, suggest that the metabolites can play a role in damage recovery. To our knowledge, this is the first study that demonstrates the bioavailability of Hamaforton™ phenolic compounds, and the effects of its metabolites on cultured dermal fibroblast response to ultraviolet A irradiation.

8.
Molecules ; 26(1)2020 Dec 31.
Article in English | MEDLINE | ID: mdl-33396504

ABSTRACT

We previously demonstrated that apoptosis induced by tocotrienols (γ and δT3) in HeLa cells is preceded by Ca2+ release from the endoplasmic reticulum. This event is eventually followed by the induction of specific calcium-dependent signals, leading to the expression and activation of the gene encoding for the IRE1α protein and, in turn, to the alternative splicing of the pro-apoptotic protein sXbp1 and other molecules involved in the unfolded protein response, the core pathway coping with EndoR stress. Here, we showed that treatment with T3s induces the expression of a specific set of miRNAs in HeLa cells. Data interrogation based on the intersection of this set of miRNAs with a set of genes previously differentially expressed after γT3 treatment provided a few miRNA candidates to be the effectors of EndoR-stress-induced apoptosis. To identify the best candidate to act as the effector of the Xbp1-mediated apoptotic response to γT3, we performed in silico analysis based on the evaluation of the highest ∆ in Gibbs energy of different mRNA-miRNA-Argonaute (AGO) protein complexes. The involvement of the best candidate identified in silico, miR-190b, in Xbp1 splicing was confirmed in vitro using T3-treated cells pre-incubated with the specific miRNA inhibitor, providing a preliminary indication of its role as an effector of EndoR-stress-induced apoptosis.


Subject(s)
Alternative Splicing , Biomarkers, Tumor/metabolism , Gene Expression Regulation, Neoplastic/drug effects , MicroRNAs/genetics , RNA, Messenger/genetics , Tocotrienols/pharmacology , Uterine Cervical Neoplasms/genetics , X-Box Binding Protein 1/metabolism , Antioxidants/pharmacology , Apoptosis , Biomarkers, Tumor/genetics , Cell Proliferation , Female , Humans , Tumor Cells, Cultured , Uterine Cervical Neoplasms/drug therapy , Uterine Cervical Neoplasms/pathology , X-Box Binding Protein 1/genetics
9.
Eur J Nutr ; 59(1): 345-358, 2020 Feb.
Article in English | MEDLINE | ID: mdl-30701305

ABSTRACT

PURPOSE: Several studies highlighted a correlation between folic acid deficiency and high plasma homocysteine concentration, considered a risk factor for multifactorial diseases. Natural folates represent an emerging alternative strategy to supplementation with synthetic folic acid, whose effects are controversial. The present work was, therefore, performed in hyperhomocysteinemic mice to study the impact of supplementation with dairy matrices containing natural folates on plasma homocysteine levels and faecal microbiota composition. METHODS: Forty mice were divided into six groups, two of which fed control or folic acid deficient (FD) diets for 10 weeks. The remaining four groups were fed FD diet for the first 5 weeks and then shifted to a standard control diet containing synthetic folic acid (R) or a FD diet supplemented with folate-enriched fermented milk (FFM) produced by selected lactic acid bacteria, fermented milk (FM), or milk (M), for additional 5 weeks. RESULTS: Supplementation with dairy matrices restored homocysteine levels in FD mice, although impacting differently on hepatic S-adenosyl-methionine levels. In particular, FFM restored both homocysteine and S-adenosyl-methionine levels to the control conditions, in comparison with FM and M. Next generation sequencing analysis revealed that faecal microbiota of mice supplemented with FFM, FM and M were characterised by a higher richness of bacterial species in comparison with C, FD and R groups. Analysis of beta diversity highlighted that the three dairy matrices determined specific, significant variations of faecal microbiota composition, while hyperhomocysteinemia was not associated with significant changes. CONCLUSIONS: Overall, the results represent a promising starting point for the applicability of food matrices enriched in natural folates to manage hyperhomocysteinemia.


Subject(s)
Diet/methods , Fermented Foods , Folic Acid/pharmacology , Gastrointestinal Microbiome/drug effects , Homocysteine/blood , Hyperhomocysteinemia/diet therapy , Milk/metabolism , Animals , Disease Models, Animal , Homocysteine/drug effects , Hyperhomocysteinemia/blood , Male , Mice , Mice, Inbred C57BL
11.
J Nutr ; 148(2): 285-297, 2018 02 01.
Article in English | MEDLINE | ID: mdl-29490094

ABSTRACT

Background: Joint data analysis from multiple nutrition studies may improve the ability to answer complex questions regarding the role of nutritional status and diet in health and disease. Objective: The objective was to identify nutritional observational studies from partners participating in the European Nutritional Phenotype Assessment and Data Sharing Initiative (ENPADASI) Consortium, as well as minimal requirements for joint data analysis. Methods: A predefined template containing information on study design, exposure measurements (dietary intake, alcohol and tobacco consumption, physical activity, sedentary behavior, anthropometric measures, and sociodemographic and health status), main health-related outcomes, and laboratory measurements (traditional and omics biomarkers) was developed and circulated to those European research groups participating in the ENPADASI under the strategic research area of "diet-related chronic diseases." Information about raw data disposition and metadata sharing was requested. A set of minimal requirements was abstracted from the gathered information. Results: Studies (12 cohort, 12 cross-sectional, and 2 case-control) were identified. Two studies recruited children only and the rest recruited adults. All studies included dietary intake data. Twenty studies collected blood samples. Data on traditional biomarkers were available for 20 studies, of which 17 measured lipoproteins, glucose, and insulin and 13 measured inflammatory biomarkers. Metabolomics, proteomics, and genomics or transcriptomics data were available in 5, 3, and 12 studies, respectively. Although the study authors were willing to share metadata, most refused, were hesitant, or had legal or ethical issues related to sharing raw data. Forty-one descriptors of minimal requirements for the study data were identified to facilitate data integration. Conclusions: Combining study data sets will enable sufficiently powered, refined investigations to increase the knowledge and understanding of the relation between food, nutrition, and human health. Furthermore, the minimal requirements for study data may encourage more efficient secondary usage of existing data and provide sufficient information for researchers to draft future multicenter research proposals in nutrition.


Subject(s)
Diet , Epidemiology , Nutritional Status , Observational Studies as Topic , Adult , Biomarkers/blood , Blood Glucose/analysis , Case-Control Studies , Child , Chronic Disease , Cohort Studies , Cross-Sectional Studies , Europe , Genomics , Health Status , Humans , Inflammation/blood , Insulin/blood , Life Style , Lipoproteins/blood , Longitudinal Studies , Metabolomics , Statistics as Topic/methods
12.
Adv Nutr ; 8(5): 639-651, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28916566

ABSTRACT

Pooled analysis of secondary data increases the power of research and enables scientific discovery in nutritional epidemiology. Information on study characteristics that determine data quality is needed to enable correct reuse and interpretation of data. This study aims to define essential quality characteristics for data from observational studies in nutrition. First, a literature review was performed to get an insight on existing instruments that assess the quality of cohort, case-control, and cross-sectional studies and dietary measurement. Second, 2 face-to-face workshops were organized to determine the study characteristics that affect data quality. Third, consensus on the data descriptors and controlled vocabulary was obtained. From 4884 papers retrieved, 26 relevant instruments, containing 164 characteristics for study design and 93 characteristics for measurements, were selected. The workshop and consensus process resulted in 10 descriptors allocated to "study design" and 22 to "measurement" domains. Data descriptors were organized as an ordinal scale of items to facilitate the identification, storage, and querying of nutrition data. Further integration of an Ontology for Nutrition Studies will facilitate interoperability of data repositories.


Subject(s)
Diet , Nutrition Assessment , Observational Studies as Topic , Adiposity , Anthropometry , Databases, Factual , Epidemiologic Studies , Humans , Research Design
13.
Biofactors ; 43(1): 54-62, 2017 Jan 02.
Article in English | MEDLINE | ID: mdl-27412371

ABSTRACT

Hyperglycemia contributes to dysregulate endothelial function associated with diabetes, leading to initiation and propagation of vascular complications and dysfunction. Caffeic acid (CA), a dietary hydroxycinnamic acid abundant in coffee, has been reported to exert antidiabetic effects in rat models. Herein, we investigated the molecular effects of physiological concentrations of CA (10 nM) against endothelial dysfunction induced by high glucose (HG) in human endothelial cells (HUVECs). HUVECs were exposed to HG 25 mM, to mimic diabetic condition, in presence of CA. Intracellular redox status (reduced glutathione, superoxide dismutase (SOD) and total antioxidant activity levels), and NF-κB pathway were examined. We also evaluated the involvement of NF-E2-related factor 2 (Nrf2)/electrophile responsive element (EpRE) pathway. Our data show that CA inhibits HG-induced nuclear translocation of NF-κB and the downstream expression of endothelial adhesion molecule 1 and restores antioxidant levels by upregulating Nrf2/EpRE pathway. Our data suggest that CA can suppress several aspects of HG-induced endothelial dysfunction through the modulation of intracellular redox status controlled by the transcription factor Nrf2. These findings highlight that low physiological concentration of CA achievable specifically upon food consumption are able to prevent endothelial dysfunction associated with inflammation and oxidative stress induced by high concentration of glucose. © 2016 BioFactors, 43(1):54-62, 2017.


Subject(s)
Caffeic Acids/pharmacology , Human Umbilical Vein Endothelial Cells/drug effects , NF-E2-Related Factor 2/metabolism , Transcription Factor RelA/metabolism , Cell Adhesion , Cells, Cultured , Dose-Response Relationship, Drug , Drug Evaluation, Preclinical , E-Selectin/metabolism , Gene Expression/drug effects , Glucose/pharmacology , Glutathione/metabolism , Heme Oxygenase-1/genetics , Heme Oxygenase-1/metabolism , Human Umbilical Vein Endothelial Cells/metabolism , Humans , Oxidative Stress , Reactive Oxygen Species/metabolism , Superoxide Dismutase/metabolism
14.
Genes Nutr ; 11: 32, 2016.
Article in English | MEDLINE | ID: mdl-28031751

ABSTRACT

BACKGROUND: We have previously reported that γ- and δ-tocotrienols (γ- and δ-T3) induce gene expression and apoptosis in human breast cancer cells (MDA-MB-231 and MCF-7). This effect is mediated, at least in part, by a specific binding and activation of the estrogen receptor-ß (ERß). Transcriptomic data obtained within our previous studies, interrogated by different bioinformatic tools, suggested the existence of an alternative pathway, activated by specific T3 forms and leading to apoptosis, also in tumor cells not expressing ER. In order to confirm this hypothesis, we conducted a study in HeLa cells, a line of human cervical cancer cells void of any canonical ER form. RESULTS: Cells were synchronized by starvation and treated either with a T3-rich fraction from palm oil (10-20 µg/ml) or with purified α-, γ-, and δ-T3 (5-20 µg/ml). α-tocopherol (TOC) was utilized as a negative control. Apoptosis, accompanied by a significant expression of caspase 8, caspase 10, and caspase 12 was observed at 12 h from treatments. The interrogation of data obtained from transcriptomic platforms (NuGO Affymetrix Human Genechip NuGO_Hs1a520180), further confirmed by RT-PCR, suggested that the administration of γ- and δ-T3 associates with Ca2+ release. Data interrogation were confirmed in living cells; in fact, Ca-dependent signals were observed followed by the expression and activation of IRE-1α and of other molecules involved in the unfolded protein response, the core pathway coping with endoplasmic reticulum stress in eukaryotic cells, finally leading to apoptosis. CONCLUSIONS: Our study demonstrates that γ- and δ-T3 induce apoptosis also in tumor cells lacking of ERß by triggering signals originating from endoplasmic reticulum stress. Our observations suggest that tocotrienols could have a significant role in tumor cell physiology and a possible therapeutic potential.

15.
PLoS One ; 10(11): e0142421, 2015.
Article in English | MEDLINE | ID: mdl-26544184

ABSTRACT

Epidemiological studies suggest that moderate and prolonged consumption of coffee is associated with a reduced risk of developing type 2 diabetes but the molecular mechanisms underlying this effect are not known. In this study, we report the effects of physiological concentrations of caffeic acid, easily achievable by normal dietary habits, in endothelial cells cultured in 25 mM of glucose (high glucose, HG). In HG, the presence of 10 nM caffeic acid was associated with a decrease of glucose uptake but not to changes of GLUT-1 membrane localization or mRNA levels. Moreover, caffeic acid countered HG-induced loss of barrier integrity, reducing actin rearrangement and FITC-dextran passage. The decreased flux of glucose associated to caffeic acid affected HG induced apoptosis by down-regulating the expression of initiator (caspase 8 and 9) and effector caspases (caspase 7 and 3) and by increasing the levels of phosphorylated Bcl-2. We also observed that caffeic acid in HG condition was associated to a reduction of p65 subunit nuclear levels with respect to HG alone. NF-κB activation has been shown to lead to apoptosis in HG treated cells and the analysis of the expression of a panel of about 90 genes related to NF-κB signaling pathway revealed that caffeic acid significantly influenced gene expression changes induced by HG. In conclusion, our results suggest that caffeic acid, decreasing the metabolic stress induced by HG, allows the activation of survival mechanisms mediated by a different modulation of NF-κB-related signaling pathways and to the activation of anti-apoptotic proteins.


Subject(s)
Caffeic Acids/pharmacology , Endothelial Cells/drug effects , Glucose/metabolism , Apoptosis/drug effects , Cell Line , Endothelial Cells/metabolism , Glucose Transporter Type 1/genetics , Glucose Transporter Type 1/metabolism , Human Umbilical Vein Endothelial Cells , Humans , NF-kappa B/metabolism , Permeability/drug effects , RNA, Messenger/metabolism
16.
Genes Nutr ; 9(4): 404, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24838260

ABSTRACT

Anthocyanins (AC) are water-soluble natural pigments found in various parts of higher plants. Despite their limited oral bioavailability and very low post-absorption plasma concentrations, the dietary consumption of these pigments has been proposed to be associated with a significant protection against several human pathological conditions, including cardiovascular diseases. Many studies highlighted that some health benefits of AC localize in particular at endothelium level, contributing to vascular homeostasis and also to the control of angiogenesis, inflammation, and platelet aggregation. This review reports and comments on the large existing literature addressing the molecular mechanisms that, beyond the antioxidant properties, may have a significant role in the effects of AC and AC-rich foods on vessel endothelium. Among these, AC have been reported to prevent peroxynitrite-mediated endothelial dysfunction in endothelial cells (ECs), thanks to their capability to modulate the expression and activity of several enzymes involved in NO metabolism. Furthermore, evidence indicates that AC can prevent the expression of adhesion molecules and the adhesion of monocytes to ECs challenged by pro-inflammatory agents. Overall, the activity of AC could be associated with the ability to elicit cell adaptive responses involving the transcription factor Nrf2 by affecting the "nucleophilic tone" of the organism. This review confirms the importance of specific nutritional molecules for human health and suggests new avenues for nutrition-based interventions to reduce the risk of cardiovascular disease in the population.

17.
Genes Nutr ; 9(3): 390, 2014 May.
Article in English | MEDLINE | ID: mdl-24604612

ABSTRACT

In order to study the effects of vitamin C supplementation on gene expression and compare its action between physiological and inflammatory conditions, a pilot study was set up utilizing microarray and qPCR technologies. Five healthy volunteers were supplemented with 1 g vitamin C (Redoxon(®)) per day for five consecutive days. Peripheral blood mononuclear cells (PBMNC) were isolated before and just after the last supplementation, and RNA was isolated for the Affymetrix gene 1.0 ST chip analysis. PBMNC were also, ex vivo, treated with LPS, and gene expression was quantified by means of a "Human NFkB Signaling" qPCR array. Only a very moderate effect on the baseline gene expression modulation was associated with vitamin C supplementation. However, in spite of the limited number of subjects analyzed, vitamin C supplementation resulted in a markedly different modulation of gene expression upon the inflammatory stimulus, specifically at the level of the MyD88-dependent pathway and of the anti-inflammatory cytokine IL-10 synthesis. This study suggests that vitamin C supplementation in healthy subjects, not selected according to a specific genetic profile, consuming an adequate amount of vitamin C, and having a satisfactory vitamin C plasma concentration at the baseline, does not result in a significant modification of gene expression profile. Under this satisfactory micronutrient status, supplementation of vitamin C is "buffered" within a homeostatic physiological equilibrium. Differently, following a second "hit" constituted of an inflammatory stimulus such as LPS, able to trigger a critical burst to the normal physiological state, the higher availability of ascorbic acid emerges, and results in a significant modulation of cell response.

18.
J Agric Food Chem ; 62(2): 443-53, 2014 Jan 15.
Article in English | MEDLINE | ID: mdl-24354337

ABSTRACT

The consumption of wine and spirits, traditionally aged in oak barrels, exposes humans to roburin ingestion. These molecules belong to a class of ellagitannins (ETs), and their only known source is oak wood. Very little is currently known about roburin bioavailability and biological activity. We reported for the first time human absorption of roburins from a French oak wood (Quercus robur) water extract (Robuvit) by measuring the increase of total phenols (from 0.63 ± 0.06 to 1.26 ± 0.18 µg GAE equiv/mL plasma) and the appearance of roburin metabolites (three different glucoronidate urolithins and ellagic acid), in plasma, after 5 days of supplementation. Robuvit supplementation induced also the increase of plasma antioxidant capacity from 1.8 ± 0.05 to 1.9 ± 0.01 nmol Trolox equiv/mL plasma. Moreover, utilizing a combined ex vivo cell culture approach, we assessed the effect of Q. robur metabolites (present in human serum after supplementation) on gene expression modulation, utilizing an Affymetrix array matrix, in endothelial, neuronal, and keratinocyte cell lines. The functional analysis reveals that Robuvit metabolites affect ribosome, cell cycle, and spliceosome pathways.


Subject(s)
Hydrolyzable Tannins/pharmacokinetics , Plant Extracts/pharmacokinetics , Quercus/chemistry , Antioxidants/analysis , Cell Cycle/drug effects , Cell Cycle/genetics , Coumarins/blood , Dietary Supplements , Ellagic Acid/blood , France , Gene Expression Regulation/drug effects , Glucuronides/blood , Humans , Hydrolyzable Tannins/metabolism , Hydrolyzable Tannins/pharmacology , Phenols/blood , Pilot Projects , Plant Extracts/chemistry , Plant Extracts/metabolism , Plant Extracts/pharmacology , Ribosomes/drug effects , Ribosomes/genetics , Spliceosomes/drug effects , Spliceosomes/genetics , Transcriptome
19.
Mol Nutr Food Res ; 57(11): 1979-87, 2013 Nov.
Article in English | MEDLINE | ID: mdl-23901008

ABSTRACT

SCOPE: Many dietary phytochemicals have been shown able to prevent a large spectrum of diseases, including cardiovascular disorders, with a mechanism commonly ascribed to an antioxidant effect. However, these in vivo beneficial effects are unlikely to be explained on the base of this mechanism. The discovery of specific genes regulated by the antioxidant responsive element (ARE) affected by antioxidants/electrophiles, led to the hypothesis that some phytochemicals may act as modulators of signal transduction pathways. The aim of the study was to investigate if in vitro pharmacological activation of Nrf2 pathway by cyanidin-3-O-glucoside (C3G) may be involved in its antiatherogenic effects. METHODS AND RESULTS: Herein, we investigated the in vitro effects of C3G on cell signaling pathways in human umbilical vein endothelial cells (HUVECs) challenged with tumor necrosis factor-α (TNF-α). Pretreatment with C3G prevented oxidative stress, improved antioxidant systems, and activated Nrf2/ARE pathway, at baseline and after TNF-α treatment. Furthermore, we demonstrated the involvement of specific mitogen-activated protein kinases (MAPKs) (ERK1/2) in C3G induction of Nrf2/ARE pathway. Finally, the inactivation of ERK1/2 activity by the inhibitor PD98059 abolished the increase of Nrf2 nuclear accumulation induced by C3G, and also increased NF-κB p65 nuclear translocation in TNF-α challenged cells. CONCLUSION: Our data confirm the hypothesis that natural Nrf2 and HO-1 inducers, such as C3G and other dietary phytochemicals, might be a potential therapeutic strategy to protect vascular system against various stressors preventing several pathological conditions.


Subject(s)
Anthocyanins/pharmacology , Endothelial Cells/drug effects , Glucosides/pharmacology , NF-E2-Related Factor 2/genetics , Signal Transduction , Tumor Necrosis Factor-alpha/pharmacology , Antioxidants/pharmacology , Endothelial Cells/metabolism , Gene Expression Regulation , Glutathione/metabolism , Heme Oxygenase-1/genetics , Heme Oxygenase-1/metabolism , Human Umbilical Vein Endothelial Cells/drug effects , Human Umbilical Vein Endothelial Cells/metabolism , Humans , Mitogen-Activated Protein Kinases/genetics , Mitogen-Activated Protein Kinases/metabolism , NF-E2-Related Factor 2/metabolism , NF-kappa B/genetics , NF-kappa B/metabolism , Oxidative Stress/drug effects , Real-Time Polymerase Chain Reaction , Superoxide Dismutase/metabolism
20.
J Pediatr Surg ; 48(2): 459-63, 2013 Feb.
Article in English | MEDLINE | ID: mdl-23414887

ABSTRACT

PURPOSE: We report the results in patients with obstructed upper pole ectopic ureters in duplex systems undergoing dismembered extravesical reimplantation of the upper pole ureter alone. METHODS: Between 01/2007 and 03/2012, 11 patients with an upper pole ectopic ureter (1 bilateral) diagnosed following the antenatal detection of hydronephrosis and showing preserved function on renal scintigraphy in a dilated upper moiety, underwent a dismembered reimplantation of the ectopic upper pole ureter as follows. The ureter was identified, separated from the lower pole ureter, and divided just above the bladder. The distal stump was suture closed, while the proximal segment was mobilized, tapered as necessary, and reimplanted using an extravesical technique. RESULTS: Twelve ectopic ureters were reimplanted. Median (range) patient age at surgery was 8 (3-48)months. Ureteral tapering was performed in 11 ureters, by infolding in 9 and using an excisional tailoring in the single case undergoing bilateral reimplantation. After a median (range) follow-up of 17 (6-50)months, all patients were asymptomatic. Eleven reimplanted ureters showed improving hydroureteronephrosis, no obstruction on diuretic scintigraphy, and no evidence of reflux on indirect radionuclide cystography. One reimplanted ureter developed worsening hydroureteronephrosis after excisional tailoring of the ureter and partial nephrectomy was performed. CONCLUSIONS: Extravesical reimplantation of the upper pole ureter is an option in dilated upper pole ectopic ureters with good function. Separating the upper and lower pole ureters proximally to the bladder does not jeopardize the ureteral blood supply and allows leaving the lower pole ureter undisturbed. Excisional ureteral tailoring should be avoided.


Subject(s)
Ureter/abnormalities , Ureter/surgery , Child, Preschool , Dilatation, Pathologic , Female , Humans , Infant , Male , Replantation , Retrospective Studies , Urologic Surgical Procedures/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...